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Abstract. We present a three–dimensional model for quark matter with a density dependent quark–quark
(confining) potential, which allows to describe a sort of deconfinement transition as the system evolves
from a low density assembly of bound structures to a high density free Fermi gas of quarks. We consider
different confining potentials, some of which successfully utilized in hadron spectroscopy. We find that a
proper treatment of the many–body correlations induced by the medium is essential to disentangle the
different nature of the two (hadronic and deconfined) phases of the system. For this purpose the ground
state energy per particle and the pair correlation function are investigated.

PACS. 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes – 12.39.-x Phenomenolog-
ical quark models – 12.39.Jh Nonrelativistic quark model – 12.38.Mh Quark-gluon plasma – 25.75.-q
Relativistic heavy-ion collisions

1 Introduction

During the past decade a considerable effort has been car-
ried out in experiments of nucleus–nucleus collisions at
relativistic energies, looking for signals of colour decon-
finement. In this situation the highly compressed hadronic
matter of the colliding nuclei should undergo a peculiar
phase transition into the so–called quark–gluon plasma
(QGP), a state of matter possibly occurring in the early
stages of the Universe.

The recent experimental evidence of an anomalous
J/Ψ suppression in the analysis of the NA50 collabora-
tion [1] lends itself to support the belief that deconfine-
ment has been achieved at some stage of the collision,
since the disappearance of J/Ψ in the final yield was long
ago predicted [2] as a possible signature for QGP.

While theoretical analysis of these data are being care-
fully carried out [3], a microscopic description of the com-
plex many–body dynamics which eventually underlies this
phase transition is urged. As it is well known, the intrinsic
nature of the QCD lagrangian and the non–perturbative
character of the confined regime prevent its direct use
within standard many–body frameworks.

Several phenomenological models have been thus pro-
posed in the past, usually tailored to reproduce the known
properties of quarks when confined into hadrons. As far as
hadronic matter is concerned, the subnucleonic degrees of
freedom are rarely felt to be worth introducing, especially
for low energy nuclear properties. However, in relativistic
heavy ion experiments, very high densities and tempera-
tures of the colliding nuclei are potentially reached and
quark degrees of freedom become dominant.

Non–relativistic constituent quark models for
quark/nuclear matter have been proposed since many
years [4–7] and have proven remarkably useful for single
hadrons spectroscopy [8,9], in spite of the lack of Lorentz
invariance and chiral symmetry. The finite mass of the
constituent quarks is often assumed to be the result of
the non–perturbative confining process inside hadrons.

The present work extends to the three–dimensional
situation a non–relativistic “string–flip like” model, al-
ready successfully employed in one dimension to show up
a hadron–quark gas transition when the density of the
system increases [10]. An extension to finite tempera-
tures has been also investigated (in a one–dimensional
system) with sound results [11]. Beyond some naive con-
fining forces, like a quadratic or a linear potential, we also
employ the so–called Cornell potential, more realistically
used for hadron spectroscopy.

We are mainly focussed on the many–body effects
played by a dense medium on the quark–quark dynamics
and thus we found it more appropriate to stick to a non–
relativistic model. Indeed, in the literature, relativistic
many–body approaches mainly rely on the mean–field ap-
proximation, while our work is centered on the in–medium
two–body correlations. Admittedly, at very large densi-
ties, the non-relativistic treatment does not seem to be
adequate: the simplest relativistic effect is kinematics and
we shall discuss this point within a “minimal” prescrip-
tion to account for it, while other effects like non–static
terms in the potential (typically spin–dependent compo-
nents of the two–body interaction) go beyond the scope
of the present work.
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The key ingredient of our model is a density dependent
screening of the confining interaction between quarks: as
it is well known in nuclear dynamics, density dependent
forces mimic the effects of many–body interactions, which
are expected to occur in a dense system of quarks. We
assume therefore the following quark–quark potential:

V (ρ, r) = Vconf (r)e−cρr , (1.1)

where r = |r1 − r2| is the relative interquark distance,
ρ = N/Ω the (uniform) density of a system of N fermions
in a volume Ω, c is a (dimensional) constant parame-
ter and Vconf (r) a suitably chosen confining potential.
The string–flip model assumes the latter to be a linear
or quadratic function of the distance: with the additional
exponential factor, the potential (1.1) resembles a strong
confining force only in the limit of very low densities (and
for short distances), where pairs of quarks should be ac-
tually bound into hadrons, while it becomes negligible
at large densities, where one expects the system to be-
have like a fermion gas (weakly interacting or even non–
interacting “quark plasma”).

In the present context the most interesting quantity,
which allows to understand whether quarks are bound into
pairs (“hadrons” in the present, colourless approach) or
rather uniformly distributed as a non–interacting Fermi
gas, is the so–called pair correlation function. It can be ob-
tained from the expectation value of the two–body density
operator:

g(r) =
N(N − 1)

ρ2
< Ψ |ρ2(|r1 − r2|)|Ψ >, (1.2)

where, for pointlike particles, the two–body density reads

ρ2(|r1− r2|) =
1

N(N − 1)

∑
i6=j

δ(ri− r1)δ(rj − r2), (1.3)

and |Ψ > is the exact (normalized) ground state of the
system. For a system of strongly correlated pairs g(r) will
show up a well localized peak at small values of r, while the
Fermi gas pair correlation function has a fairly constant
behaviour, with the exception of small r values, where the
Pauli principle prevents particles to be close to each other.

Another quantity which will be investigated here is
the ground state energy of the system and its evolution
with the density. In the current literature this is usually
interpreted as the equation of state of the system, thus
it can help in disentangling the occurrence of different
“phases” in the evolution of the system.

The paper is organized as follows: in Sect. 2 we shortly
present the formalism employed to find eigenvalues and
eigenfunctions of the three-dimensional model. In Sect. 3
we discuss the numerical results, both for simple (har-
monic or linear) confining potentials and for a more real-
istic Cornell potential. Finally in Sect. 4 we shortly discuss
the implications of our calculation.

2 Three–dimensional system

The extension of the model of [10] to a three–dimensional
system is straightforward. Nevertheless it is an important

test, since the statistical properties of a one–dimensional
system (and, specifically, the occurrence of phase transi-
tions) sometimes depend on the considered dimensionality.

To start with, the quark–quark potential will be writ-
ten as in (1.1), with a quadratic function for the confining
force:

V Qconf (r) =
1
2
αqr

2 . (2.1)

In contrast with ref. [10] we shall consider here di-
mensional quantities, so that αq has dimensions of en-
ergy × length−2, and the constant c, in (1.1) acquires
the dimensions of a length squared. Different density de-
pendences (e.g. ρ1/3, in order to leave a dimensionless c)
have also been considered, with qualitatively similar re-
sults, but no compelling reason has been found to alter
the original 1–Dim model.

We also take into account spin degrees of freedom,
which enter into play in the definition of the symmetry
properties of the two–quark states, although they are not
relevant for the dynamical correlations, since in (2.1) no
explicit spin dependence of the quark–quark interaction
is assumed. Colour degrees of freedom are neglected as in
the previous work.

Following the same procedure adopted to solve the 1–
Dim problem, we obtain eigenfunctions and energy eigen-
values of the system, starting from the Schrödinger equa-
tion for the relative motion

Hrelψn(r) = Enψn(r) (2.2)

where

Hrel = − h̄
2

2µ
4+ V (ρ, r) . (2.3)

In the above µ = mq/2 is the reduced mass of the pair.
We search for solutions of (2.2) corresponding to bound
states by imposing the boundary condition1

ψn(r)|r=R = 0 (2.4)

for arbitrary values of R, beyond the “confining” region
of the potential (1.1).

Due to the central nature of the latter it is convenient
to work out the solution in spherical coordinates and set

ψn(r) =
∞∑
`=0

∑̀
m=−`

amn`ϕn`(r)Y
m
` (θ, φ), (2.5)

the Y m` being the spherical harmonics (eigenfunctions of
L2 and Lz) and ϕn`(r) the radial wavefunction which, in

1 It should be noticed that the potential (1.1) with the con-
fining force (2.1) does not admit, “stricto sensu”, bound states,
since V (ρ, 0) = V (ρ,∞) = 0. However it displays a potential
barrier which separates a confinement region around the origin
from a free–motion regime at large distances. The transmission
probability inversely depends upon the height of the barrier,
and obviously increases with the density. With a different con-
fining potential, like the Cornell one (see below), bound states
are allowed even in the presence of the screening factor
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turn, we express as a linear superposition of free solutions
(the spherical Bessel functions):

ϕn`(r) =
∑
i

Ni`c`nij`(kir). (2.6)

In solving the radial wave equation, the different par-
tial waves are obviously decoupled from each other (and
are degenerate with respect to m). Thus we can require
that the condition (2.4) is separately satisfied by each par-
tial wave [ϕn`(R) = 0], the wavenumbers ki being chosen
within the discrete set of values (different for each `–value)
obeying2

j`(kiR) = 0 . (2.7)

With standard projection techniques one can transform
the radial Schrödinger equation into the following alge-
braic system for the coefficients bmn`i ≡ amn`c`ni:∑

i

bmn`i
[
k2
i δij + α̃V`ij

]
= bmn`jEn (2.8)

where α̃ = (mq/h̄
2)αq, En = (mq/h̄

2)En and

V`ij = Ni`Nj`
1
α

∫ R

0

drr2j`(kir)j`(kjr)V (ρ, r), (2.9)

the Ni` being the appropriate normalization constants

Ni` =

√
2
R3

1
|j`+1(kiR)| , (2.10)

which are required to normalize the spherical Bessel func-
tions in a finite spherical volume of radius R:

Ni`Nj`
∫ R

0

drr2j`(kir)j`(kjr) = δij (∀`) . (2.11)

The inclusion of spin degrees of freedom into the two–
quark states amounts to consider, in ψn(r), even partial
waves associated with the (antisymmetric) singlet state
S = 0, and odd partial waves together with the (symmet-
ric) triplet states S = 1.

Moreover it is useful to define the following radial prob-
ability density:

ρn(r) = r2

∫
|ψn(r)|2dΩr ≡

∑
`

ρn`(r), (2.12)

where the partial wave contributions, derived from (2.5)
and (2.6), read

ρn`(r) = r2
∑
ij

b0n`i
∗
b0n`jNi`Nj`

× (2`+ 1)j`(kir)j`(kjr). (2.13)

[We have assumed here, for simplicity, equal weight for the
m–components, bmn`i = b0n`i, (∀m), which allows to per-
form the residual sum over m]. A few examples of ρn`(r)

2 In this work, typical values of R are in the range 8÷ 10 fm

Fig. 1. Partial wave (` = 0) contribution to the radial proba-
bility density ρ00(r) (left) and ρ10(r) (right) obtained from the
eigenfunctions of the potential (1.1) with V Qconf = αqr

2/2 (con-

tinuous lines). The corresponding quantities for the pure V Qconf
are also shown (dashed lines). The density is ρ = 0.1 fm−3

Fig. 2. Partial wave (` = 0) contribution to the radial prob-
ability density ρ00(r) at ρ = 0.3 fm−3 (left) and ρ = 0.5 fm−3

(right): the ρ00(r) obtained from the eigenfunctions of the po-
tential (1.1) (continuous line in both figures) is compared with
the corresponding quantity for the pure V Qconf (left, dashed
line) and with the partial probability density for a free Fermi
gas (right, dot dashed line)

are shown in Figs. 1 and 2. In the first figure the par-
tial probability densities are evaluated at a rather low
(ρ = 0.1 fm−3) density, both for the ground (n = 0) and
the first excited (n = 1) s–states; in this situation the po-
tential (1.1) does not differ too much from the confining
(quadratic) potential, at least for limited values of r: thus
the partial probability densities turn out to be close to
the corresponding quantities evaluated with a pure har-
monic potential (dashed lines). In Fig. 2, instead, where
only the ground state ` = 0 partial density is shown, siz-
able deviations from the partial densities of the harmonic
potential are already visible at ρ = 0.3 fm−3, while for
the even larger density ρ = 0.5 fm−3 the comparison of
the partial probability density associated with the eigen-
functions of (1.1) is carried along with the one of a free
Fermi gas (dot–dashed line): the similarity between the
two shows that at this density the interquark potential is
already rather weak.
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The same technique utilized for solving the Schrö-
dinger equation can now be applied to obtain the solu-
tion of the corresponding Bethe–Goldstone (BG) equa-
tion; in this case the two–body wavefunction for the rel-
ative motion must incorporate the Pauli correlations in-
duced by the medium. The formal expansion (2.6) must
then be modified within the independent pair approxima-
tion, assuming that all single particle states with momen-
tum ki ≤ kF are occupied as in the ground state of the free
Fermi gas (we remind that for a three–dimensional Fermi
gas the relationship between the density and the Fermi
momentum is: ρ = k3

F /3π
2). This obviously sets a con-

straint on the available momenta for the relative motion
of a correlated pair. Indeed by defining

k =
k1 − k2

2
, K = k1 + k2 , (2.14)

the series (2.6) will include now, beyond an “unper-
turbed” term proportional to j`(kr), which fixes the rela-
tive momentum k of the pair (with k1,k2 inside the Fermi
sphere), only terms with ka ≡ (k′1 − k′2)/2 satisfying the
condition k′1, k

′
2 > kF :

χn`,kK(r) = N0`c
`
n0j`(kr)

+
∑
a

Q(K,ka)Na`c`naj`(kar) . (2.15)

In the above equation we have introduced the Pauli oper-
ator

Q(K,ka) = θ

(∣∣∣∣K2 + ka

∣∣∣∣− kF)
× θ

(∣∣∣∣K2 − ka
∣∣∣∣− kF) (2.16)

which obviously depends on both the relative and the to-
tal momentum of the pair of particles, the latter being
conserved in all terms of the expansion (2.15). Here have
adopted the customary [12] angle averaged Pauli oper-
ator, Q(K, ka) ≡ 〈Q(K,ka)〉. Thus we can obtain the
coefficients c`na, for each partial wave ` of the correlated
wave function (2.15), by solving the algebraic system:(
EBGn − k2

b

)
c`nbQ(K, kb)− α̃

∑
a

V`abc`naQ(K, ka) = 0,

(2.17)

The Bethe–Goldstone wavefunction for a pair of particles
will then read

ΨK,k(R, r) = ΦCMK (R )ψBGn,kK(r) (2.18)

= ΦCMK (R )
∑
`m

amn`χn`,kK(r)Y ml (Ωr)

the CM wave function being a plane wave. The radial
probability density (2.12) can be defined also for the
Bethe–Goldstone solutions, but now this quantity will de-
pend upon k and K: although the dependence on these
quantum numbers turns out to be mild, it will be more

convenient to consider, instead, the two–body correlation
function.

In what follows we have taken into account only the
first two partial waves (` = 0, 1) since our main interest
is focussed on the existence of the bound states of a pair
and on their evolution with the density: for higher an-
gular momentum eigenvalues the centrifugal force largely
overcomes the binding effects of the two–body interaction
potential and the corresponding states belong to the con-
tinuum.

2.1 The equation of state

In solving the Bethe–Goldstone equation, one gets both
eigenfunctions and eigenvalues of the relative motion; we
can thus consider the ground state energy (per particle)
of the system, which, in the thermodynamical limit of a
very large system (N,Ω → ∞, with fixed ρ = N/Ω), can
be written as follows:

ε ≡ E

N
=

1
2ρ2

∑
S,MS

∫
d3k

(2π)3

∫
d3K

(2π)3

× θ (kF − |K/2 + k|) θ (kF − |K/2− k|)E(S)
kK

=
1

8ρ2π4

∫ ∞
0

k2dk

×
∫ ∞

0

dK K2 I(k,K)
(
E

(0)
kK + 3E(1)

kK

)
. (2.19)

In the above S(MS) denote the spin quantum numbers: we
remind that, to preserve antisymmetrization, the singlet
state S = 0 is uniquely associated with even spatial wave
functions (here ` = 0), while the triplet S = 1 states
are associated with odd spatial wave functions (` = 1).
Moreover EkK = ECM + EBGkK , with ECM = h̄2K2/4mq

and I(k,K) is the result of the (analytical) integration
over the angle between k and K. The latter appears only
in the θ–functions of the r.h.s. of (2.19) since, using the
Pauli averaged operator, the BG solutions are independent
on the direction of K.

It is interesting to compare the above evaluation of the
energy per particle, which includes both the dynamical and
the statistical (Pauli) correlations, with the Hartree–Fock
(HF) approximation,

εHF =
3
5
εF + UHF

=
3
5
εF +

1
8ρ2π4

∫ ∞
0

k2dk (2.20)

×
∫ ∞

0

dKK2I(k,K) [V0(k) + 3V1(k)] ,

εF being the free Fermi energy and:

V`(k) =
∫ R

0

drr2 {Nk`j`(kr)}2 V (ρ, r) . (2.21)

Obviously the HF scheme accounts for the interaction
only through an average, one–body mean field, thus de-
scribing, in principle, a system of independent particles.
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We will show in the next section that the HF approxima-
tion fails in describing the system at low densities, where
the HF energy per particle diverges. Instead a proper
treatment of two–body correlations provides finite, sen-
sible results.

2.2 The pair correlation function

The two–body correlation function defined in (1.2) can be
evaluated using the Bethe–Goldstone ground state wave
function:

g(r) =
N(N − 1)

ρ2
< ΨBG|ρ2(|r1 − r2|)|ΨBG >

=
1
ρ2

∫
d3k

(2π)3

×
∫

d3K

(2π)3
θ (kF − |K/2 + k|) θ (kF − |K/2− k|)

×
{
|ψn0,kK(r)|2 + 3 |ψn1,kK(r)|2

}
(2.22)

In deriving (2.22) we have obviously used the same set
of states which were employed for the evaluation of the
ground state energy of the system. Again the angular in-
tegrations in (2.22) can be analytically performed, as in
(2.19), since the BG wave functions do not depend on the
direction of K.

To appreciate the amount of correlations (both dy-
namical and statistical) embodied by g(r) it is useful to
compare it with the corresponding quantity evaluated in
a Fermi gas:

gFG(r) =
1
ρ2

∫
d3k

(2π)3

×
∫

d3K

(2π)3
θ (kF−|K/2+k|) θ (kF−|K/2−k|){

[Nk0j0(kr)]2 + 3 [Nk1j1(kr)]2
}

(2.23)

where the radial correlated wave functions are replaced
by the spherical Bessel functions, with the appropriate
normalization.

3 Results

For an explicit evaluation of (2.19) and (2.22) we have
to specify our choice of the model parameters: for the
quark mass (in the kinetic term of the Hamiltonian) we
use the reference value mq = 220 MeV/c, which has been
employed in various non–relativistic quark models to fit
hadron spectroscopy (see, for example, [8]); the strength
αq of the harmonic potential, (2.1), has been fixed to the
value αq = 120 MeV fm−2, in order to have hadronic di-
mensions of the order of about 1 fm, though we have not
attempted a precise fit. Finally we have to choose the c
parameter in the exponent of (1.1): clearly its value af-
fects the density dependence of the interaction and, for

Fig. 3. Ground state energy per particle, (2.19) versus the
density ρ (continuous line), compared with the HF energy per
particle (dashed line) and to the pure kinetic energy of a Fermi
gas (dot–dashed line). The quadratic confining potential (2.1)
is employed. In a the c value is ten times bigger that in b

the sake of illustration, we shall adopt two typical and
rather extreme values: c = 1 fm2 and c = 0.1 fm2.

The correlated and HF energy per particle for the
quadratic confining potential are shown in Fig. 3a (c =
1 fm2) and 3b (c = 0.1 fm2), together with the average
kinetic energy of a free Fermi gas (εF ), as a function of the
density: in both cases there exists a “critical density”, ρc,
at which the correlated and mean–field (HF) energies coin-
cide: this fact implies that the medium correlations taken
into account by the Bethe–Goldstone equation no longer
affect the relative motion of a pair and for ρ > ρc the sys-
tem can be regarded as a gas of independent quarks, whose
(weak) interaction is embodied in the mean Hartree–Fock
field, gradually vanishing with increasing density.

Although, in the present treatment, we cannot iden-
tify a specific order parameter, which would allow to con-
sider the phase transition from a thermodynamical point
of view, we have interpreted as a transition density, ρc,
the one where the medium induced correlations vanish:
this quantity can be defined as the average value (with
respect to the relative and total momentum of a pair) of
the difference between the matrix elements of the bare po-
tential (1.1) and the G-matrix which one obtains from the
solution of the Bethe–Goldstone equation:

∆U(ρ) = < k,K|V |k,K >−< k,K|G|k,K >. (3.1)

The choice of∆U as an “order parameter” is arbitrary, but
it is closely related to the energy gap usually considered in
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the microscopic description of superconductivity; in that
case a non–vanishing gap signals the existence of bound
electron pairs which profoundly alter the global properties
of the system. Here we assume (3.1) as a discriminant
between a system of “hadrons” (bound pairs of quarks)
and a weakly interacting Fermi gas of quarks.

One can see in Fig. 3 that not only the value of the
above defined critical density depends (as it is rather ob-
vious) upon c, being ρc ' 0.2 fm−3 for c = 1 fm2 and
ρc ' 1 fm−3 for c = 0.1 fm2, but also the behaviour of
ε(ρ) with the density is different in the two cases: this im-
plies that the energy of a correlated pair does not simply
scale as the bare interaction (1.1), which depends on the
product cρ alone. Indeed the loss of the scaling property
must be ascribed to the density dependence of the Pauli
correlations in the Bethe–Goldstone equation from which
ε(ρ) is obtained. In other words, while the Hamiltonian is
scale invariant, the BG solution is not.

We notice that the transition from the zero density
limit [ε(ρ = 0) ' 230 MeV] to the high density regime
of independent particles is quite smooth and monotonic
for c = 0.1 fm2, but goes instead through a maximum for
c = 1 fm2, which better suites, at least qualitatively, to
the hypothesis of a phase transition between two “stable”
regimes. It might be worth reminding that the behaviour
illustrated in Fig. 3a closely resembles the analogous result
of [5].

It is also interesting to compare the above discussed
equation of state with the one obtained, within the same
theoretical framework, using a somewhat different confin-
ing potential, namely

V Lconf (r) =
1
2
αlr . (3.2)

We have assumed αl = 445 MeV fm−1 and c = 0.5 fm2 (in
the density dependent exponential of the full potential),
in such a way that at ρ = 0.2 fm−3 the potentials V (ρ, r)
stemming from the quadratic and from the linear con-
fining interactions display a fairly similar behaviour. One
should remind that a linear quark–quark potential can be
motivated on the basis of lattice QCD calculations, and
is employed in many phenomenological constituent quark
models (e.g. [8,9]).

The energy per particle obtained with the potential
(3.2) is displayed in Fig. 4, which is qualitatively similar
to Fig. 3a, although the maximum in the BG correlated
energy seems to be less pronounced than in the case of
the harmonic potential, and the critical density is some-
what higher (ρc ' 0.3 fm−3). Hence, independently on the
specific form of the confining potential, the main features
of the equation of state for the correlated system remain
fairly unchanged, providing we keep the same density de-
pendence of the two–body interaction.

It is worth to notice, at this point, that the total energy
per particle rapidly exceedes, with increasing density, the
rest mass of the quark, thus posing serious doubts on the
validity of the non–relativistic treatment adopted here. Of
this effect it is largely responsible the average kinetic en-
ergy, which grows as ρ2/3 and which becomes dominant

Fig. 4. The same as Fig. 3a, but utilizing the linear confining
potential (3.2), with the parameters given in the text

above the critical density; as a consequence of the density
dependence of the interaction, asymptotically the system
behaves as a free Fermi gas and could be dealt with rel-
ativistically, thus avoiding the risk of getting an acausal
equation of state. However a relativistic approach is not so
obvious in the presence of the interaction: thus in the next
subsection we shall limit ourselves to give an approximate
but quantitative estimate of the effects associated with a
relativistic kinematics.

Turning to the pair correlation function (2.22), it is
illustrated in Fig. 5 for the quadratic confining potential
(2.1), at ρ = 0.2 fm−3 with c = 1 fm2 and αq = 120 MeV
fm−2. Together with the full result for the correlation func-
tion obtained from the solution of the BG equation (con-
tinuous line), the separate ` = 0 (dashed line) and ` = 1
(dot–dashed line) contributions are displayed: the latter
obviously moves the average separation distance toward
bigger values. The comparison with the free Fermi gas re-
sult (dotted line) shows that at this density the system is
approaching the transition point, as it was argued from
the energy per particle of Fig. 3a (obtained with the same
c value): indeed the Fermi gas component at large dis-
tances is already quite important in the correlated g(r).
Still, however, the latter displays a large probability for a
bound pair with a size of the order of r = 1.9÷ 2 fm.

The evolution of the BG pair correlation function with
the density is shown in Fig. 6, where g(r) is displayed for
densities ranging from 0.1 to 0.5 fm−3. The presence of
a bound state is clearly manifest at ρ = 0.1 fm−3, while,
with increasing density, the Fermi gas component devel-
ops at large distances, and at ρ = 0.5 fm−3 the correlation
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Fig. 5. The pair correlation function g(r) derived, with the
quadratic potential (2.1), from the Bethe–Goldstone wave
functions is displayed as a function of the relative interquark
distance (continuous line): the density is fixed to the value
ρ = 0.2 fm−3. The separate ` = 0 (dashed line) and ` = 1
(dot–dashed line) contributions are also shown. The dotted
curve corresponds to the free Fermi gas correlation function,
at the chosen density

Fig. 6. The pair correlation function g(r) derived from the
Bethe–Goldstone wave functions is displayed as a function
of the relative interquark distance at various densities: ρ =
0.1 fm−3 (thick solid line), ρ = 0.2 fm−3 (dot–dashed line),
ρ = 0.3 fm−3 (thin solid line) and ρ = 0.5 fm−3 (dashed
line). For the last density value the Fermi gas correlation func-
tion is also shown (dotted line). The BG solutions refer to the
quadratic confining potential (2.1)

function for the interacting system (dashed line) can be
hardly distinguished from the one of the Fermi gas, rep-
resented by the dotted line. Similar results are obtained
with the linear confining potential of (3.2).

3.1 Application to the Cornell potential

Many static potentials, sometimes ”motivated” from
QCD, have been proposed in the past in the attempt to
reproduce mesonic and baryonic spectra in terms of bound
states of quarks. The full complexity of hadron spec-
troscopy requires indeed complicated functional forms,
with spin and colour dependent terms (see, e.g., [8,9]).
We have chosen here the Cornell potential [13], which is
one of the earliest QCD motivated quark–quark potential
but, in spite of its relative simplicity, it has been fairly
successfully employed to fit heavy quarkonia [14,15]. It
has the form:

VCornell(r) = −a
r

+ br +K , (3.3)

where a, b and K are constants. It contains the typical
Coulomb–like term, which can be motivated, at small r,
by lowest order perturbative QCD, where a term αs/r
should account both for the perturbative one–gluon ex-
change and, in a string picture, for the transverse vibra-
tions of the string. At large r perturbation theory breaks
down and the linear term is essentially justified by lattice
calculations.

We have then multiplied (3.3) by the usual density
dependent factor:

V (r, ρ) = VCornell(r)e−cρr (3.4)

and we have employed this potential within the same the-
oretical framework illustrated in the previous section.

It is interesting to note that in [17] an analogous ex-
ponential screening factor has been adopted, in connection
with the Cornell potential, to account for the deconfine-
ment of heavy quarks bound states at finite temperature:
in the above mentioned paper the temperature dependent
chemical potential plays the role which we ascribe to the
density of the system and it is found that with increasing
µ(T ) the dissociation energy of a heavy qq̄ pair rapidly
vanishes.

Here we have utilized the Cornell potential with
the following (standard) values of the parameters: a =
92.73 MeV fm, b = 942.7 MeV fm−1, K = −802 MeV.
The latter have been used in [15] together with rather
large quark masses, typically to explore the heavy quarko-
nia: we shall adopt here the same light constituent quark
mass utilized above (mq = 220 MeV) together with the
value c = 1.5 fm2.

In solving the Bethe–Goldstone equation for the rela-
tive motion of a pair, one should notice that the Coulomb–
like term of the Cornell potential requires a careful nu-
merical treatment in the matrix elements of the potential
between unperturbed states [see (2.9)].

We display in Fig. 7 the equation of state (continuous
line labelled ε) obtained with the screened Cornell poten-
tial: it closely resembles the results previously obtained
with the more schematic quadratic (with c = 1 fm2) or
linear potentials. The critical density, where the correlated
energy coincides with the HF one, is about 0.5 fm−3. Also
in this case, as in the previous Figs. 3 and 4, the energy



202 W.M. Alberico et al.: Deconfinement transition: a three dimensional model

Fig. 7. Ground state energy per particle, (2.19) versus the
density ρ (continuous line), compared with the HF energy per
particle (dashed line) and to the pure kinetic energy of a Fermi
gas (dot–dashed line). The screened Cornell potential (3.4) is
employed, for quarks of mass mq = 220 MeV. Also shown (us-
ing, correspondingly, the same symbols) are the “relativistic”
estimates of the same quantities as obtained from (3.5); the
latter are labelled by symbols with a superscript “r”

per particle rapidly reaches, with increasing density, more
than twice the value of the rest mass of the quark, hence
hindering the non–relativistic approach. In order to get
a rough estimate of what the corresponding relativistic
equation of state would look like, we have adopted a sim-
ple prescription, already utilized in [15]; it amounts to
replace the non–relativistic energy eigenvalues ε by:

εr =
√
m2
q + 2mqε−mq . (3.5)

The correlated energy per particle obtained from (3.5)
is shown in Fig.7 by the continuous line labelled εr and
clearly appears more sound with respect to the value of the
quark rest mass. We also display the results of (3.5) for the
Hartree–Fock (εrHF ) and the free Fermi Gas (εrFG) ener-
gies. It is important to notice that this procedure does not
alter the value of the transition density. Thus our conclu-
sions on the evolution of the system with the density is not
essentially altered. Obviously we cannot claim that these
results take into account properly the relativistic nature of
the system: yet at large densities, where the pure kinetic
energy survives, our approximation should be sound, while
at low densities, up to the occurrence of the transition in-
vestigated here, we can expect the non–relativistic result
to be correct.

The analysis of the pair correlation function obtained
with the Cornell potential leads to analogous considera-

Fig. 8. The pair correlation function g(r) derived from the
Bethe–Goldstone wave functions for the Cornell potential (3.4)
and mq = 220 MeV is displayed as a function of the relative
interquark distance at various densities: ρ = 0.05 fm−3 (thick
solid line), ρ = 0.1 fm−3 (dashed line), ρ = 0.2 fm−3 (dot–
dashed line), ρ = 0.35 fm−3 (dashed line) and ρ = 0.6 fm−3

(dotted line). For the last density value the Fermi gas correla-
tion function is also shown (thin solid line)

tions: in Fig. 8 we show a few examples of g(r) at different
values of the density. The free Fermi gas two–body corre-
lation function is recovered for ρ ' 0.6 fm−3, in agreement
with the results obtained in the equation of state.

4 Conclusions

In this work we have considered a system of fermions inter-
acting through a density–dependent potential: the main
purpose was to show that, as the density increases, the
system evolves from an assembly of bound pairs to a non–
interacting Fermi gas. This outcome is obviously related to
the exponential screening (proportional to the density) in
the potential (1.1): however we show that the occurrence
of a sort of deconfinement phase transition is non–trivially
linked to the effect of the medium: indeed the latter in-
tervenes not only through the density dependence of the
two–body interaction, but also through the Pauli corre-
lations, whose relevance increases with the density of the
medium.

Indeed a central point in the present calculations is
the interplay between the increasing Pauli–blocking effect
on the Bethe–Goldstone wavefunction and the decreasing
efficacy of the interquark potential in producing a stable
binding of the pairs.

Another interesting outcome of the present work is the
similarity of the results for the three–dimensional system
to the ones obtained for a single spatial dimension [10]:
in going from one to three spatial dimensions, the critical
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behaviour of the system does not seem to be substantially
affected.

At variance with the one–dimensional case, we have
employed here different forms for the confining potential:
in addition to the quadratic potential of [10], we have also
considered a linear one and a the more realistic Cornell
potential. In all instances the low density confined phase
gradually evolves into a regime in which medium effects
and dynamical correlations are negligible, the fermions be-
ing deconfined. This behaviour turns out to be fairly in-
dependent upon the specific confining potential.

Of course the density dependence of the interaction
adopted here has no microscopic foundation; but a simi-
lar screening of the color interaction, induced by a finite
temperature of the many–body system, was obtained in
the past by summing an infinite chain of one–loop inser-
tions in the gluon propagator [16] and, more recently,
utilized in the investigation of the deconfinement of heavy
vector mesons [17].

From the above results we can conclude that the decon-
finement phase transition occurs in a many fermion system
under the following conditions: i) the attractive two–body
interaction, which produces two or more quark bound
states, is screened in the presence of a dense medium; ii)
the action of the medium is accounted for not only in the
two–body dynamics (through the above mentioned, phe-
nomenological, screening mechanism) but also from the
statistical point of view, through the effect of the Pauli
principle, which strongly modifies the quark–quark inter-
action.

This work was supported in part by the European Network
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